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Terms (= trees)

Ranked alphabet : (3, rank) with rank : ¥ — N
2™ = {o € % | rank(c) = m}

The set of terms (trees) over X and a set A is the smallest set 75 (A)
satisfying:

() =V UAC Tx(4A),
(i) ifk>1,0eX® t1,... tm € Ts(A), then o(ty,...,tm) € Tu(A).

Ts, = Ts(0) We have Ts # () iff ©(©) £ (.

Tree language : L C Tx, (or: L : Ty, — {0,1}) .



Trees (= terms)

Example: © = {¢® 4 o}
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Nondeterministic Tree Automata

The classical definition.

A (finite-state bottom-up) tree automaton is a tuple M = (Q, X, F,J),
where

e () is afinite set (states),

e X is a ranked alphabet (input ranked alphabet),

e F' C (is aset (final states), and

e Jis afamily (6,|c € X) of mappings 6, : Q™ — P(Q) for ¢ € (™),

M is deterministic if |0, (q1, - . -, gm )| has at most one element for all
m>0,0eX™ andq,...,qm € Q.

The family § extends to a mapping i : T — P(Q). The tree language
recognized by M is

Ly ={seTs|ou(s)NF #0}.



Nondeterministic Tree Automata

Examples of recognizable tree languages:
- the set of derivation trees of a cf grammar
- set of trees which contain the pattern o (e, «)

- many other examples

Theorem. Bottom-up tree automata and deterministic bottom-up tree
automata have the same recognizing power.

Proof. The standard powerset construction.



Nondeterministic Tree Automata

Example.

» = {41 @} showthat L = {s € Tx | o(e, ) occurs in s} is
recognizable.

Let M = (Q, %, F,§), where
o Q — {J—aqavqok}l
L F — {on};

® - 504 — {J—7QQ}1

B 5U(J—aqa) — 60(_7q0k) — 50’(q0k7 _) — {QOk}’
otherwise 6,(—, —) = {L},

- 0+(qor) = {qor }, otherwise §,(—) = {L}.

Then L = L.



Nondeterministic Tree Automata

Example.
Qok, L O
Qok, Lo
o, L qo, L« o, L qo, L

Ja, L a da, L



Semirings
Semiring : (K, ®,®,0,1)
e (K,®,0)is acommutative monoid,

e (K,®,1)is amonoid,

and for every a,b,c€e K: (a®b)©c=(a®c)® (bO®c)
a®bdc)=(a0b)®(a®c)
a®0=00a=0.

Examples :
- Boolean semiring : B =({0,1},V,A,0,1)
- semiring of natural numbers : N=(N,+,-,0,1)
- semiring of formal languages : Lang, = (P(A™),U,-,0,{c})
(over A)
- tropical semiring : Trop = (NU {o0}, min, +, 0o, 0)

arctic semiring : Arct = (NU{—o0}, maz, 4+, —00,0)



Nondeterministic Tree Automata

An algebraic definition

Asystem M = (Q, X, F,0) (over B = ({0,1},V,A,0,1))
F = (F,|qe€Q)with F, € {0,1}

§=(0m : 2™ = {0,139 %9 | m > 0) of mappings.

Note, equivalent with J, : Q™ — P(Q).

M is deterministic if, for every q1, ..., q9m € @, there is at most one g with
0m(0)q1...am.q 7 0



Nondeterministic Tree Automata

An algebraic definition

We associate the X-algebra A, = ({0,1}%, %), where
Y5 = (6m(o) |m>0,0 € ™) and

Let hs : T — {0,1}< be the unique X-homomorphism from T% to Ayy.

The tree language recognized by M is Ly : T, — {0, 1} defined, for every

s € Ty, by
= \/ hs(s)g A F.
q€Q
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Tree series

(Tree language : L : Ts, — {0,1})
Tree series : ¢ : T — K, where (K, ®,®,0,1) is a semiring
Examples of tree series:
height : T, — N, in Arct = (NU {—o00}, max, +, —00, 0)
size, : Ts — N, inN = (N, +,-,0,1)
size: T, = N, inN = (N, +,-,0,1)
H#o(e,a) i Is =+ N, inN=(N,+,-,0,1)
shortest, : T — N, in Trop = (NU {—o0}, min, +, —00, 0)
yield : T, — P(X*), in Langy, = (P(X7),U, -, 0, {e})
pos : Tx, — P(N*), in Langy

pos : T, — P(N"), in Langy

o(e,x)
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Tree series

The set of tree series over K and ¥ is denoted by K {(Tx)).
For s € Tx, we write (¢, s) for ¢(s).

The support of ¢ is supp(¢) = {s € Tx | (v, s) # 0}.

The tree series ¢ is polynomial if supp(y) is finite.

The set of polynomial tree series over K and X is denoted by K (T%).
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Generalizations

recognizability by multilinear mappings over some finite dimensional
K-vector space, where K is a field, cf. [BR82],

recognizability by K-Y-tree automata, where K is a commutative
semiring, cf. [Boz99],

recognizability by weighted tree automata over K, where K is a
semiring, cf. [AB87],

recognizability by finite tree automata over K with fixpoint semantics,
where K is a commutative and continuous semiring, cf. [Kui98, EKOB],

recognizability by polynomially-weighted tree automata, where K is a
semiring, cf. [Sei92, Sei94], and

recognizability by weighted tree automata over M-monoids, cf. [Mal05]
and [FMVO06].



K-semimodule:

(K, ®,®,0,1) a commutative semiring, (V, +,0) a commutative monoid,

and - : K x V — V a function:
(kOK) v=Fk- (k' -v)
k-(v+v)=(k-v)+(k-0v)
(koK) v=(k-v)+ (k' v)
l-v=v

k-0=0-v=0

K-vector space: K is afield and V is a group

A mapping w : V™ — V' is multilinear Iif:

! ./
WV, .., Vic1, kv+EV , vig1, ..o Um) =kw(V1, .. Vi1, U, Vig1, . .

/ /
E'w(vi,...,0i-1,0,Vit1,-.,Um)

D)

(2)
(3)
(4)
()
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Multilinear mappings over finite-dimensional vector spaces

A multilinear representation [BR82] of Tx is (V, i, y) where
- (V,+,0) is a finite-dimensional K-vector space (K is a field),

- transitions: j = (um | m > 0) is a family with ., : 2™ — £(V™, V),
the set of multilinear mappings from V™ to V'

- final behaviour: v : V' — K is a linear form.

The X-algebra associated with (V, i1, v) is Ay = (V, X,.), where
S = (m(0) | m > 0,0 € ().

h, : Ts — Ay is the unique X-homomorphism.

The tree series recognized by (V, u,7) is ¢ € K{(Tx)) such that
(p,s) =v(hu(s)) for every s € Tx.

15
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Tree series recognizable by multilinear mappings

1) (Example 4.1 of [BR82])The tree series sizes IS recognizable by
multilinear mappings over the Q-vector spece V = (Q?, +, 02) with
02 = (0,0).

Let (V, i, y) defined as follows:

Foreverym > 0,0 € ("™ e, ,...,e;, € {e1 = (1,0),e2 = (0,1)}, we
define

,Ll,m(O')(eil,. . °>eim) —
¢

e1 +es fo=dandi1=...=4 =1

el fo#Adandi; =... =iy, =1
< €2 If there is exactly one 1 < 7 < m with ¢; = 2
| 02 otherwise.

v(e1) = 0,y(e2) =1

For every s € Ts;, we have h,(s) = e1 + sizes(s)ea.



Tree series recognizable by multilinear mappings

2) (Example 9.2 of [BR82]) The tree series height is not recognizable by
multilinear mappings over any Q-vector space.

We denote the class of tree series recognizable by multilinear mappings
over some K-vector space by ML(K).

Theorem. Every tree language which is recognizable by a deterministic
tree automaton M = (Q, X, F, 9) is also recognizable by multilinear
mappings over the Z,-vector space Z .

Proof. Let Q = {1,...,n}, we define (Z3, ,~y) with
,um(a)(eil,...,eim) = €] iff | = (50—(’1:1, ...,’l:m),
v(e;)) =11iffi € F.
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K-¥-tree automata [Boz99]

Preparation:

(K, ®,®,0,1) a commutative semiring, @ = {qi,-.., g} afinite set.
(K®,4,00) is a K-semimodule via - : K x K¢ — K@, with

(k-v)g =k ®vg

Form >0andv: Q™ — K9, a multilinear extension of v is a mapping
v: K9 x...x K° = K9 such that

D'
m

- 7 Is multilinear

-1y, .., 1, ) =v(pP1,- -, Pm)-

It is unique and
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K-¥-tree automata [Boz99]

A system M = (Q, i, f), where
- ( afinite set,

- 1= (pm (o) | m > 0,0 € £™) is a family of transition functions
tm (o) : Q™ — K©, and

- f: @ — K is a final weight function.

Form > 0and o € 2™, let ju,, (o) : (K2)™ — K% be the multilinear
extension of p,, (o).

The X-algebra associated with M is Ay, = (K9, %,,) where
Yy = (um(o) | m>0,0 € 2™,

The unique X-homomorphism from Tx to Ay is by, : Ts — K©.

The tree series recognized by M is pn € K{T%)) such that, for s € Ty,

(o, ) @h

qeQ



K-¥-tree automata [Boz99]

Example: the tree series height is recognizable by an Arct-Y-tree
automaton M = (Q, u, f) where Arct = (NU {—oc0}, max, 4+, —00,0) and

o Q= {p1,p2},
e f(p1)=0and f(p2) = —o0,

e 1 is defined in the following way:

= po(@)()pr =0,

- po(a)()ps =0,

- p2(0)(p1,p2)p =1,

- p2(0) (P2, P1)p =1,

- p2(0)(p2,p2)p, = 0,

- w2(o)(p,q)r = —oc for every other p, q,r € Q.



K-¥-tree automata [Boz99]

We denote the class of tree series recognizable by a K-3>-tree automaton
for some X by TA(K).

Theorem. For every field K, we have ML(K) = TA(K).

Proof. Let (V, +,0) be a vector space over the field (K, ®, ®,0,1) of
dimension k < oo; also let (V, u, ) be a multilinear representation of 7x.
Moreover, let M = (Q, v, f) be a K-X-ta over K. We say that (V, u,~) and
M are related if

e ()is abasis of V,

e foreverym > 0,0 € ™) and p,p1,...,pm € Q, the equation
Um(0)(P1;- -y Pm)p = pm(0)(P1, - .., pm)p holds, and

e for every p € @, the equation f(p) = v(p) holds.
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Weighted tree automata over semirings [AB87]

A system M = (Q, %, K, F, §) (over the semiring (K, ®,®,0,1))

F=(F;|qe@)with Fy, € K

5= (6m : 2™ — K" X9 | m > 0) of mappings.

a € K

€ K9 xQ
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Wota over semirings [AB87]

We define §,,(0) : (K9)™ — K<, by

Om(0)(V1,. .., Um)q = @ (V1)g1 © -+ © (Vm)gm © 0m(0)qy...qm.q-

We associate Ay = (K9, %s), where 35 = (6m(0) | m > 0,0 € (™),
Let hs : T, — K© be the unique -homomorphism from T to A

The tree language recognized by M is the tree series vy : Ty — K
defined for every s € Tx, by

(om,s) = €D hs(s

q€Q



Wota over semirings [AB87]

We denote the class of tree series recognizable by weighted tree
automata over the semiring K by WTA(K).

Theorem. For every commutative semiring K, we have

TA(K) = WTA(K).

Corollary. For every field K, we have

ML(K) = TA(K) = WTA(K).

24



Wota over semirings [AB87]

Determinization [BVO3].

A system M = (Q, %, K, F, §) (over the semiring (K, ®,®,0,1))

F=(F;|qe@)with Fy, € K

5= (6m : 2™ — K" X9 | m > 0) of mappings.

M is deterministic if, for every q1, ..

0m(0)q1...am.q 7 0

a€e K c KR xQ

., gm € @, there is at most one ¢ with

25



Wota over semirings [AB87]

Determinization.

In general wta over a semiring K and deterministic wta over K do not
have the same recognizing power.

B. Borchardt and H. Vogler [BVO3]:

- There is a wta over Trop which is not equivalent with any deterministic
wta over Trop.

- They give a partial determinization algorithm, which converges in
certain cases.

26



Finite tree automata over semirings with fixpoint
semantics [Kui98, EKO03]

The semiring (K, ®,®,0,1) must be commutative,
- naturally ordered: k C k' iff (3l € K)k @ | = k' is a partial order,
- complete: infinite sum exists, and

- continuous: naturally ordered, complete and, for every w-chain
kiCkyC...iInKandk € K,

(Vn > 1) @,_, ki C kimplies that ., ki C k.

Then K, K(Tx)), and K{(Tx)™ become a complete poset with respect to
the (extension) of C.

27



Finite tree automata over semirings with fixpoint
semantics [Kui98, EKO03]

A finite tree automaton (over K and X)) is a tuple M = (Q, M, S, P) where

e () is afinite set (of states),

e M= (M,, | m>0)is a family of transition matrices M., such that

M € (K(Ts(Ym)))?*?" and for almost every m it holds that every
entry of M., is 0,

e Sc (K(ITs(Y1))'*“ is the initial state vector, and

e P c (K(Ts))?*! is the final state vector.

28



Finite tree automata over semirings with fixpoint
semantics [Kui98, EKO03]

Such a system induces a continuous mapping
O K(Te) @ = K(Te)?™,

whose least fixpoint is fix .

The tree series recognized by M is

Ym = @ (Sq +or (fix®)q),

qeQ

and we denote the class of tree series recognizable by finite tree automata
over the semiring K with fixpoint semantics by FTA (K).

Theorem. For every commutative and continuous semiring K, we have

WTA(K) = FTA(K).

29



Polynomially weighted tree automata over semirings
[Sei9?2]

A system M = (Q, %, K, F, §) (over the semiring (K, ®,®,0,1))

F=(F,|qc Q) with F, € P (K)
5= (0m : 2™ — P, (K)?"*? | m > 0) of mappings.

om(0) = q1...qm f € Pn(K)

30
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Polynomially weighted tree automata over semirings

[Sei9?2]

We define §,,(0) : (K9)™ — K<, by

We associate Ay = (K9, %s), where 35 = (6m(0) | m > 0,0 € (™),
Let hs : T, — K© be the unique -homomorphism from T to Ay

The tree language recognized by M is the tree series oy : Ty — K
defined for every s € Tx, by

(PM, EBF h5



Polynomially weighted tree automata over semirings
[Sei9?2]

We denote the class of tree series recognizable by polynomially weighted
tree automata over the semiring K by PWTA(K).

Theorem. For every semiring K, we have

WTA(K) C PWTA(K).

Theorem. PWTA(N) — WTA(N) # 0.
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Wta over M-monoids [Mal05, FMV06]

A multioperator monoid (for short: M-monoid) (K, &, 0, 2) consists of
- a commutative monoid (K, &, 0) and
- an (-algebra (K, 2).

A multioperator monoid is distributive if

/Cl,... 7— 1,@0,3, YR [P EB(UK kl,... 7— 1,a3,ki+1,...,km)

(d-Q2)
holds for every m > 0, w € Q™) k1, ... km € K, 1< i <m, and
ai,...,an € K. (Thisimplies wi(...,0,...,) = 0).



Wta over M-monoids [Mal05, FMV06]

A system M = (Q, X, A, F, ) (over the M-monoid A = (K, ®,®,))
F = (F,|q€c Q) with F, ¢ QW

§ = (Om : 2™ — (QUMHQRT X |1y > 0) of mappings.

S(0) = @1eeedm | e weQO
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Wta over M-monoids [Mal05, FMV06]

We define §,,(0) : (K9)™ — K<, by

We associate Ay = (K9, %s), where 35 = (6m(0) | m > 0,0 € (™),
Let hs : T, — K© be the unique -homomorphism from T to A

The tree language recognized by M is the tree series vy : Ty — K
defined for every s € Tx, by

SOM, EBF h5
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Wta over M-monoids [Mal05, FMV06]

We denote the class of tree series recognizable by weighted tree
automata over the M-monoid A by MWTA(A).

Theorem. For every semiring K, we have PWTA (K) = MWTA(Pol(K)).

Theorem. MWTA (Negp) — PWTA(N) # 0.

Theorem. (cf. Corollary 1 of [Mal05]) Let K be a distributive M-monoid and
¢ be a tree series which is recognizable by a deterministic wta over K.
Then there is a semiring K’ such that K C K’ and ¢ is recognizable by a
wta over K'.




Wta over M-monoids [Mal05, FMV06]

A new result:

Theorem. ([FMV06]). Let K be a distributive M-monoid and ¢ be a tree
series over K. Then ¢ is rational iff ¢ is recognizable.
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