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Multioperator monoid

A multioperator monoid (for short: M-monoid) (A, &, 0, {2) consists of
- a commutative monoid (A, ¢, 0) and
- an (2-algebra (A, Q2)
- with id4 € Q™ and 0™ € Q™) for m > 0.

A iIs distributive if

n n
wA(bl,...,bi_l,GBaj,le, P ,bm) — EBQ)A(bl, .. .,bq;_l,aj,le, c o

holds for every m,n >0, w € Q) by,.... by € A, 1 < i <m, and
ai,...,a, € A. In particular, wa(...,0,...,) =0.



Operations on Ops(A)

Ops(A) (Ops®(A)) is the set of operations (k-ary operations) on A.
Let (A, ®,0,) be an M-monoid and £ > 0.

o Letw;,ws € Ops®(A). The sum of w; and ws is the k-ary operation
w1 ® ws that is defined, for every @ € A", by (w1 ®w2)(@) = w1 (@) © w2 (a).

o Letw € Ops™(A4) and w; € Ops' (A) with [, > 0 forevery 1 < j < k. The
composition of w with (w1, ...,wy) isthe (I1 4 - - - + lx)-ary operation
w(wi,...,wy) that is defined by

— —

(w(wi,...,wk))(dl,...,a;) = w(wi(al),... wk(ai))
for every a; € A% with 1 < j < k.

(Ops®(A), ®,0"%) is a commutative monoid for every k > 0, for k = 0 is
iIsomorphic to the monoid (A, @, 0).

Sum is left- and right- distributive, and composition is associative.



Uniform tree valuations

t| z 1s the number of occurrences of variables of Z in ¢

Uvals(2, Z, A) is the class of mappings S : Tx(Z) — Ops(A) such that the
arity of (S, t) is |t| z. Such mappings are called uniform tree valuations over
Y., Z and A.

e Hence Uvals(X,0, A) = A{(Tx)).
e (0,t) =0!"17 for every t € T (Z2).

e The sum of S, 52 € Uvals(X, Z, A) is the uniform tree valuation S; &" S
defined by (S1 @&" S2,t) = (S1,t) ® (S2,t) forevery t € Tx(Z2).

(Uvals(X%, Z, A), ®%, 0) is a commutative monoid; for Z = { it is nothing
but (A(Tx)), ®,0).

e For S € Uvals(X, Z, A) we write S = @, (5 (S, t)-L.



Weighted tree automata (wta) over M-monoids

Syntax

Asystem M = (Q, X, Z, A, F, u,v) (over X, Z and A)
- @, >, Z as before,

- (A, ®,0,9) is an M-monoid,

- F: Q — QW is the root weight,

- = (m | m > 0) is the family of transition mappings with
Lm 2 Q™ x 2 x Q@ — QM)

-v: Z x Q — QW the variable assignment.

Such a wta recognizes a uniform tree valuation, i.e., a mapping
Sy Ts(Z) — Ops(A) in Uvals(X, Z, A).

In case Z = () it recognizes a tree series in A(Tx)).



Wta over M-monoids

Semantics

M= (Q,>,Z,A, F,u,v) awta over the M-monoid Aand ¢t € Tx (%)
-arun of M ontis amapping r : pos(t) — Q
- the set of runs of M on tis Ry (t)
- for w € pos(t), the weight wt (¢, r, w) of w in ¢ under r
o if t(w) = zforsome z € Z, then wt(t,r,w) = v(z,r(w))

e otherwise (if t(w) = o for some o € %)k > 0) wt(t,r, w) =
pe(r(wl), ... r(wk), t(w), r(w))(wt(t, r,wl), ..., wt(t,r, wk))

e the weight of r is wt(t,r) = wt(t, r, €).

The uniform tree valuation Sy, : Tx(Z) — A recognized by M is defined by

Su(t)= € F(r(e))(wt(t,r)).

r€Rpr (1)



An example of a wta over M-monoids

The tree series height : T, — N can be recognized by

M — (Q? E’ A’ F7 II’L))

where
e Q={q},
o A= (N,— — Q)with {1 4+ max{ni,...,ng} |k >0} CQ,

e F(q) =idy, and

o 1o(c,g) =0andforevery k> 1and o € ) et
pr(q...q,0,q) =1+ max{ni,...,ng}.

Then Sys = height.



Rational operations on Uvals(Z, Z, A)

1. The sum @" : (51 ®" Sa,t) = (S1,t) D (Sa2,t).

2. The top-concatenation: for k > 0, o € X% w € Q*) and
Si,...,8, € Uvals(X, Z, A), we define

top, o (S1,- . Sk = @D w((S1ta),. oy (Skotn))-o(tr, ... tr).

t1,..., tL€Tx(2)

3. The z-concatenation: for every z € Z and S, S” € Uvals(X%, Z, A), we
define

5.8 = ((S,s)os,z((S',tl),...,(S',tl))).s[z<—(tl,...,tl)].

SETZ(Z)a l:|S|Z
t1,..-, thTE(Z)



Rational operations on Uvals(Z, Z, A)

4. The z-KLEENE-star: for every z € Z and S € Uvals(2, Z, A) we define:
(i) S° = 0; and
(i) S2T = (S -, S?)®"ida.z.

Then, the z-KLEENE star S of S is defined as follows:

If S'is z-proper, i.e., (5, z) = 0, then
(52,1) = (S:7"0 T

for every ¢t € Tx(Z), otherwise S? = 0.
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Rational expressions (over 3,7 and A)

RatExp (2, Z, A) (over X, Z, and A) is the smallest set R satisfying
Conditions (i)—(v). For every ratexp n € RatExp(3, Z, A) we define its
semantics [n] € Uvals(X, Z, A) simultaneously.

(1)
(in

(iii)
(iv)

(v)

Forevery z ¢ Z and w € QY we have w.z € Rand [w.z] = w.z.

Forevery k > 0,0 € ), w € Q™ and rational expressions
m,...,nx € R we have top, ,(n1,...,m) € Rand

[tops . (1, -y mk)] = topg o, ([m], - - - s [nk]).
For every n1,m2 € Rwe have n; +n2 € Rand [0 + n2] = [m] ®"[n:]-

For every n1,m2 € Rand z € Z we have n; -. 72 € R and
[71 -2 2] = [m] -z [n2].

Foreveryn € Rand z € Z we have n; € Rand [nZ] = [n]:.



12
Rational tree valuations (over %, 7 and 4)

We call S € Uvals(X, Z, A) rational, if there exists a rational expression
n € RatExp(X, Z, A) such that [n] = S.

Rat(X, Z, A) is the class of rational uniform tree valuations over X, Z and A.

Then Rat (3, Z, A) is the smallest class of uniform tree valuations which
contains the uniform tree valuation w.z for every z € Z and w € Q) and is
closed under the rational operations.



Kleene theorem for wta over M-monoids

a) Recognizable = rational:

Theorem. If A is distributive, then for every wta M = (Q, X, Z, A, F, u,v) there
exists a rational expression n € RatExp(2, Z U @, A) such that

Sm = [[n]]lTE(Z)-
Hence we have Rec(X, Z, A) C Rat(X, fin, A)| 1y (z), Where

Rat(X,fin, 4) = | | Rat(%,Z,A).

Z finite set

13



Kleene theorem for wta over M-monoids
The M-monoid (A, ®,0,2) is
e sum closed, if wi @ ws € Q) for every k > 0 and w1, ws € Q).

e (1,%)-composition closed, if w(w’) € Q%) for every k > 0, w € QY and

W' e Q)
e (x,1)-composition closed, if w(ws,...,ws) € Q¥ for every k > 0,
we Q¥ and wi, ..., wp € QW

b) Rational = recognizable:

Theorem. Let A be a distributive, (1, %)-composition closed and sum closed.
Then Rec(X, Z, A) contains the uniform tree valuation w.z for every z € Z and
w € QW and it is closed under the rational operations.

Hence, Rat(X, Z, A) C Rec(%, Z, A).

14
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Kleene theorem for wta over M-monoids

In case Z = ():

Theorem. For every (1, x)-composition closed and sum closed DM-monoid A,
we have Rec(X, 0, A) = Rat(%, fin, A)|ry..

Proof. We have
Rec(X, 0, A) C Rat(3, fin, A)|r. € Rec(X, fin, A)|. € Rec(X,0, A)

where the last inclusion can be seen as follows. Let S € Rec(3, fin, A)|7y.
Thus, there existawta M = (Q, X, Z, A, F, u,v) such that S = Sys|ry.. Itis
easy to see that for the wta N = (Q, 3,0, A, F, u, D) we have that

Sy = SM‘TE- Thus S & ReC(E, @,A)



Wta over (arbitrary) semirings
M= (Q,>%, Z,K,F,o,v)awta, K isasemiring, t € Tx(2)
-arun of M ontis amapping r : pos(t) — Q
- the set of runs of M on tis Ry (t)
- for w € pos(t), the weight wt (¢, r,w) of w in ¢t under r
o if t(w) = zforsome z € Z, then wt(t,r,w) = v(z,r(w))

e otherwise (if t(w) = o for some o € X%k > 0)
wt(t,r,w) = 0k (r(wl), ..., r(wk), t(w), r(w))

e the weight of ris wt(¢,7) = ][, cppa(r) Wt(t, 7, w), where the order of the

product is the postorder tree walk.

The tree series Sy : Tx(Z) — K recognized by M is

Sam(t) = Z wt(t,r) - F(r(e)).

rE€R s (t)

The class of recognizable tree series by such wta: Recs, (2, Z, K).

16



Semiring M-monoids

An arbitrary semiring (K, ®, ®,0, 1) can be simulated by an appropriate
M-monoid:

for every a € K, let mull”): K* — K be the mapping defined as follows: for
every ai,...,ar € K we have mulgk)(al,...,ak) =a1 ®---Oar ® a.

Moreover, let D(K) = (K, ®,0,), where Q") = {mulé’“) |a € K}.

Then D(K) is a distributive, sum closed, and (1, x)-composition closed
M-monoid. (idx = mul{" and 0¥ = mul'".)

Theorem. Recg: (2, Z, K) = Rec(X, Z, D(K)).

17



A Kleene theorem for wta over arbitrary semirings

Theorem. Recg, (2, K) = Rat(X, fin, D(K))|r, for every semiring K.

Proof.
Recs: (3, K) = Rec(3,0, D(K)) = Rat(%, fin, D(K)) |y,

18



Rational tree series over a semiring K

The set of rational tree series expressions over ¥, Z and K, denoted by
RatExp (2, Z, K), is the smallest set R which satisfies Conditions (1)-(6). For
every n € RatExp(X, Z, K) we define [n]s: € K{1x(Z))) simultaneously.

1. For every z € Z, the expression z € R, and [z]s; = 1.z.

2. Forevery k> 0,0 € X% and ni,...,n. € R, the expression
o(n,...,nk) € Rand [o(n1,...,nk)]se = top, ([m]sr,-- -, [x]sr)-

3. Foreveryn € Rand a € K, the expression (an) € R and

[(an)]s: = a[n]s:.

4. For every n1,1n2 € R, the expression (1 + 72) € R and
H(nl + 772>]]ST — [[nl]]sr + IInQ]]sr-

5. For every 1,12 € Rand z € Z, the expression (1 o. 12) € R and
[(71 02 m2)]sr = [m1]sr 02 [m2]se-

6. Foreveryn € Rand z € Z, the expression (n;) € R and

[(n2)]se =[],

The class of rational tree series: Ratg, (X, Z, K).
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A Kleene theorem for wta over commutative semirings

We can relate rational tree series over X, Z, and K and rational uniform tree
valuations over 33, Z, and D(K).

For this, define:
one : Umaps(X, Z, D(K)) — K((Tx(z)) as follows.

For every S € Umaps(2, Z, D(K)) and t € Txuz, let
(one(S),t) = (S,t)(1,...,1), where the number of arguments 1 is |t|z.

Note that (one(S),t) = (5,t) for every t € Ts;. We extend one to classes in the
usual way.

Lemma. For every commutative semiring K, we have
Rats (2, Z, K) = one(Rat (%, Z, D(K))).




A Kleene theorem for wta over commutative semirings

Corollary. For every commutative semiring K, we have that
Recsr (22, K) = Ratg (2, fin, K) |7y, .

Proof.

a) Rats: (X, Z, K)|1. = one(Rat(X, Z, D(K)))|r. = Rat(X, Z, D(K))|r
Then

Rats, (X, fin, K) |1, = Rat(X, fin, D(K))|ry,

b) We already proved

Recg (X, K) = Rec(%,0, D(K)) = Rat(%, fin, D(K))|r,

21
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Kleene theorem for wta over commutative semirings

Lemma. For every commutative semiring K, we have
Rats (2, Z, K) = one(Rat (%, Z, D(K))).

Proof. We redefine rational expressions over 3, Z and D(K):

RatExp' (%, Z, D(K)) and Rat' (3, Z, D(K))

(1)
(in

(iii)

(iv)
(v)

(Vi)

For every z € Z we have z € R and [z] = mul{" .z.

For every k > 0, 0 € ©®) and rational expressions 71, ...,n, € R we
have 0'(771, e 777k:) € R and 0'(771, ce ,nk;)]] = tOpa’mulgk) ([[771]], Cee [[nk;]])

For every n € R and a € K, the expression (an) € R and
[(an)] = muli" o[n].

For every n1,m2 € Rwe have n; +n2 € Rand [n1 + n2] = [m] ®"[n:]-

For every ni,m2 € Rand z € Z we have n; -». 12 € R and
[ -2 m2] = [m] -= [n2].

Foreveryn € Rand z € Z we have n; € Rand [n:] = [n]:.



Kleene theorem for wta over commutative semirings

Then

Rat' (%, Z, D(K)) = Rat(S, Z, D(K)) and
RatExp’ (X, Z, D(K)) = RatExp(Z, Z, K).

Thus we can prove by induction on 7: for every n € RatExp’ (%, Z, D(K)),
tels(Z),anday,...,a, € K, we have that

(Inl t)(ar, ... an) = ([]sr,t) @ a1 © ... © an.

This implies that for every n € RatExp’ (2, Z, D(K)), we have
[7]s: = one([n]), where [n]s: denotes the semiring semantics of 7.

23
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