An Axiomatic Framework for Finite Automata

Szeged, September 2013

Zoltán Ésik

Aims

• To show that the validity of several constructions in automata theory only depends on certain simple **equational properties of fixed operations**.

• To define and develop the basic theory of **Conway** and **it**-**eration semirings**.

•To show the usefulness of these algebraic structures for automata theory by:

• showing that **Kleene's theorem** only depends on the Conway semiring identities, and

• providing complete axiomatizations of the equational theory of the semirings of (regular) languages and (rational) power series, and

• relating iteration semirings to **complete** and **continuous semirings**, and **inductive** *-**semirings** and **Kleene algebras**.

Semirings

Definition A semiring

$$S = (S, +, \cdot, 0, 1)$$

(S,+,0) is a commutative monoid, (S, ⋅, 1) is a monoid.

$$a(b+c) = ab + ac$$

$$(b+c)a = ba + ca$$

$$0a = a0 = 0.$$

Idempotent semiring: a + a = a**Commutative semiring**: ab = ba

A morphism of semirings preserves the operations and the constants.

Semirings

Examples

- The semiring ${\mathbb N}$ of nonnegative integers.
- The boolean semiring $\mathbb{B} = (\{0,1\}, \lor, \land, 0, 1)$
- The semiring \mathbb{N}_∞ with underlying set $\mathbb{N}\cup\{\infty\}$

 $\infty + x = x + \infty = \infty$, $\infty y = y\infty = \infty$, $x, y \in \mathbb{N}_{\infty}, y \neq 0$

- The language semiring $P(A^*) = (P(A^*), \cup, \cdot, \emptyset, \{\epsilon\}).$
- The semiring P(M) of all subsets of a monoid M.

• The semiring $\operatorname{Rel}(A) = (\operatorname{Rel}(A), \cup, \circ, \emptyset, \operatorname{Id})$ of binary relations.

- Polynomial semirings $S\langle A^* \rangle$.
- The tropical semirings

 $\mathbb{T} = (\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0) \text{ and } (\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)$

• Any ring (thus any field) and any bounded distributive lattice.

Why semirings?

A finite automaton over a semiring S is a finite directed graph whose edges are labeled in the semiring S. (Some vertices may also carry a label in S.)

The **behavior** of the automaton is an element of S.

Examples

- Classical finite automata.
- Weighted finite automata.
- Iterative programs.

Automata can be represented by matrices.

Matrix semirings

When S is a semiring and $n, m \ge 0$, we denote by $S^{n \times m}$ the set of all $n \times m$ matrices over S.

Definition Suppose that S is a semiring and $n, m, p \ge 0$. For any matrices $A, B \in S^{n \times m}$, we define $A + B \in S^{n \times m}$:

$$(A+B)_{ij} = A_{ij} + B_{ij}$$

And if $A \in S^{n \times m}$ and $B \in S^{m \times p}$, then we define $AB \in S^{n \times p}$ by

$$(AB)_{ij} = \sum_{k=1}^{m} A_{ik} B_{kj}.$$

The **zero matrix** $0_{mn} \in S^{m \times n}$ has all 0 entries. The **unit matrix** $E_n \in S^{n \times n}$ has 1's on the diagonal and 0's elsewhere.

Matrix semirings

Proposition When S is a semiring and $n \ge 0$,

$$S^{n \times n} = (S^{n \times n}, +, \cdot, 0, E_n)$$

is a semiring.

Definition Given a relation ρ from the set of the first n positive integers to the set of the first m positive integers, there is an associated zero-one matrix, also denoted ρ with $\rho_{ij} = 1$ iff $i\rho j$. We call this matrix a **relational matrix**, or a **functional matrix**, when ρ is a function. A **permutation matrix** is a matrix associated with a permutation.

Definition Given a semiring S and a set A, a (formal) power series over S and A:

$$f: A^* \to S$$
 or $f = \sum_{u \in A^*} (f, u)u$,

where (f, u) = f(u) for all words u. **Support** of f: supp $(f) = \{u \in A^* : (f, u) \neq 0\}$. A **polynomial** is a series whose support is finite.

The sum of two series is defined pointwise. The product of two series f, g is given by:

$$(fg,u) = \sum_{u=xy} (f,x)(g,y) \quad \text{i.e.},$$

$$(fg)(u) = \sum_{u=xy} f(x)g(y), \quad u \in A^*.$$

The series 0 and the series 1 are given by

• (0, u) = 0, for all $u \in A^*$,

• $(1, \epsilon) = 1$ and (1, u) = 0, for all $u \in A^+$, where ϵ denotes the empty word.

We may embed S and A^* into $S\langle A^* \rangle$ in a natural way.

$$(s,u) = \begin{cases} s & \text{if } u = \epsilon \\ 0 & \text{otherwise} \end{cases}$$
$$(v,u) = \begin{cases} 1 & \text{if } v = u \\ 0 & \text{otherwise} \end{cases}$$

Example Each series in $\mathbb{B}\langle\!\langle A^* \rangle\!\rangle$ may be identified with a subset of A^* . $\mathbb{B}\langle\!\langle A^* \rangle\!\rangle$ is isomorphic to $P(A^*)$. $\mathbb{B}\langle\!\langle A^* \rangle\!\rangle$ is isomorphic to $P_f(A^*)$, the semiring of finite subsets of A^* .

Proposition For every set A and semiring S, $S\langle\!\langle A^* \rangle\!\rangle$ is a semiring containing $S\langle A^* \rangle$ as a subsemiring.

Theorem The semiring $\mathbb{N}\langle A^* \rangle$ is the free semiring, freely generated by the set A.

Given any $h : A \to S'$, where S' is a semiring, there is a unique way to extend h to a semiring morphism $h^{\sharp} : \mathbb{N}\langle A^* \rangle \to S'$. First extend h to a monoid morphism $\overline{h} : A^* \to S'$, then let

$$sh^{\sharp} = \sum_{u \in \text{supp}(s)} (s, u)(u\overline{h})$$

for all $s \in \mathbb{N}\langle A^* \rangle$.

Theorem The semiring $\mathbb{B}\langle A^* \rangle$ (or $P_f(A^*)$) is the free idempotent semiring, freely generated by the set A.

Theorem Given any semiring S' and functions $h_S : S \to S'$ and $h : A \to S'$ such that h_S is semiring morphism and each sh_S commutes with any ah, there is a unique semiring morphism $h^{\sharp} : S\langle A^* \rangle \to S'$ extending both h_S and h.

Definition A *-semiring is a semiring S equipped with a unary star operation * : $S \rightarrow S$. Morphisms of *-semirings are semiring morphisms preserving the star operation.

Definition A **Conway semiring** is a *-semiring *S* which satisfies the **product star** and **sum star** identities, i.e.,

$$(ab)^* = a(ba)^*b + 1$$

 $(a+b)^* = a^*(ba^*)^*, a, b \in S.$

Proposition The following identities hold in Conway semirings:

$$a^* = aa^* + 1$$

 $a^* = a^*a + 1$
 $0^* = 1$
 $aa^* = a^*a$
 $(ab)^*a = a(ba)^*$
 $(a+b)^* = (a^*b)^*a^*$

The first identity is the star fixed point identity. In any Conway semiring S we define $a^+ = aa^* = a^*a$.

Examples

• \mathbb{B} , \mathbb{N}_{∞} \mathbb{B} : $0^* = 1^* = 1$, \mathbb{N}_{∞} : $0^* = 1$, $x^* = \infty$, $x \neq 0$ • $P(A^*)$ $L^* = \{u_1 \dots u_n : u_i \in L, n \ge 0\}$ • \mathbb{T} $x^* = 0, x \in \mathbb{N} \cup \{\infty\}$ • $\operatorname{Rel}(A)$ R^* is the reflexive-transitive closure of R

When S is a *-semiring, we turn each matrix semiring $S^{n \times n}$ into a *-semiring. When n = 0, the definition of star is clear. When n = 1, we use the star operation of S. Suppose that n > 1 and let m = n - 1. We define:

$$\left(\begin{array}{cc}A & B\\C & D\end{array}\right)^* = \left(\begin{array}{cc}\alpha & \beta\\\gamma & \delta\end{array}\right)$$

where $A \in S^{m \times m}$, $B \in S^{m \times 1}$, $C \in S^{1 \times m}$, and $D \in S^{1 \times 1}$, and where

$$\alpha = A^* B \delta C A^* + A^* \qquad \beta = A^* B \delta$$

$$\gamma = \delta C A^* \qquad \delta = (D + C A^* B)^*.$$

Theorem (Conway, Krob, Bloom-Ésik) Suppose that S is a Conway semiring. Then, by the above definition, so is each $S^{n \times n}$, and the matrix star formula holds for *all* possible decompositions of a matrix into four parts such that A and D are square matrices of any dimension. Moreover, the **star permutation identity** holds:

$$(\pi A \pi^T)^* = \pi A^* \pi^T$$

where $A \in S^{n \times n}$ and π is an $n \times n$ permutation matrix with transpose (inverse) π^T .

Note The star permutation identity can be rephrased as the implication:

$$A\pi = \pi B \quad \Rightarrow \quad A^*\pi = \pi B^*$$

where A, B are $n \times n$ and π is an $n \times n$ **permutation** matrix. The identity $(AB)^* = E_n + A(BA)^*B$ holds for all matrices $A \in S^{n \times m}$ and $B \in S^{m \times n}$.

Proposition The following identities hold for matrices over a Conway semiring:

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^* = \begin{pmatrix} (A + BD^*C)^* & (A + BD^*C)^*BD^* \\ (D + CA^*B)CA^* & (D + CA^*B)^* \end{pmatrix}$$
$$\begin{pmatrix} A & B \\ 0 & D \end{pmatrix}^* = \begin{pmatrix} A^* & A^*BD^* \\ 0 & D^* \end{pmatrix}$$
$$\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}^* = \begin{pmatrix} A^* & 0 \\ 0 & D^* \end{pmatrix}$$

Suppose that S is a Conway semiring and A is a set. Then we define a star operation on $S\langle\!\langle A^* \rangle\!\rangle$. Given $s \in S\langle\!\langle A^* \rangle\!\rangle$, let $s_0 = (s, \epsilon)$. Then for any word u we define

$$(s^*, u) = \sum_{u=u_1\cdots u_n, u_i \in A^+} s_0^*(s, u_1) s_0^* \cdots s_0^*(s, u_n) s_0^*$$

Theorem (Bloom-Ésik) If S is a Conway semiring, then so is any $S\langle\!\langle A^* \rangle\!\rangle$.

Suppose that S is a Conway semiring, S_0 is a sub Conway semiring of S, and $\Sigma \subseteq S$. Let $S_0 \langle \Sigma \rangle$ denote the collection of all finite linear combinations over Σ with coefficients in S_0 .

Definition An automaton over (S_0, Σ) is a triplet $\mathbf{A} = (\alpha, A, \beta)$, where $\alpha \in S_0^{1 \times n}$, $A \in (S_0 \langle \Sigma \rangle)^{n \times n}$, $\beta \in S_0^{n \times 1}$, called the initial vector, the transition matrix and the final vector. The behavior of \mathbf{A} is:

$$|\mathbf{A}| = \alpha A^* \beta.$$

Definition We call $s \in S$ recognizable over (S_0, Σ) if s is the behavior of some automaton over (S_0, Σ) . Notation: $\text{Rec}_S(S_0, \Sigma)$.

Kleene's theorem in Conway semirings **Examples**

- 1. Let $S = \mathbb{B}\langle\!\langle \Sigma^* \rangle\!\rangle$, $S_0 = \mathbb{B}$, Σ a finite set. Then an automaton over (S_0, Σ) is an ordinary nondeterministic automaton, and its behavior is the characteristic series of the language accepted by the nondeterministic automaton.
- 2. Let S_0 be the semiring \mathbb{N}_{∞} and let Σ be a finite set. Consider the semiring $S_0 \langle\!\langle \Sigma^* \rangle\!\rangle$. Then an automaton $\mathbf{A} = (\alpha, A, \beta)$ over (S_0, Σ) is a weighted automaton over Σ with weights in \mathbb{N}_{∞} and the behavior is given for words $u = a_1 \dots a_n$ by

$$(|\mathbf{A}|, u) = \sum_{i, i_1, \dots, i_{n-1}, j} \alpha_i(A_{i, i_1}, a_1) \cdots (A_{i_{n-1}, j}, a_n) \beta_j.$$

Thus a series is recognizable over (S_0, Σ) iff it is recognizable by a weighted automaton.

Definition Let S be a Conway semiring, S_0 a sub Conway semiring of S, and $\Sigma \subseteq S$. We call $s \in S$ rational over (S_0, Σ) if s is contained in the sub Conway semiring generated by $S_0 \cup \Sigma$. **Notation:** $\operatorname{Rat}_S(S_0, \Sigma)$.

Theorem (Bloom-Ésik) *Kleene theorem for Conway semirings*. Let *S* be a Conway semiring, S_0 a sub Conway semiring of *S*, and $\Sigma \subseteq S$. Then $\operatorname{Rat}_S(S_0, \Sigma) = \operatorname{Rec}_S(S_0, \Sigma)$.

The inclusion $\operatorname{Rec}_S(S_0, \Sigma) \subseteq \operatorname{Rat}_S(S_0, \Sigma)$ follows from the matrix star formula. The reverse inclusion is shown by establishing some closure properties of $\operatorname{Rec}_S(S_0, \Sigma)$.

Lemma $\operatorname{Rec}_{S}(S_{0}, \Sigma)$ is closed under sum.

Proof Let $\mathbf{A} = (\alpha, A, \gamma)$ and $\mathbf{B} = (\beta, B, \delta)$ be automata over (S_0, Σ) . Define

$$\mathbf{A} + \mathbf{B} = \left((\alpha, \beta), \left(\begin{array}{cc} A & \mathbf{0} \\ \mathbf{0} & B \end{array} \right), \left(\begin{array}{c} \gamma \\ \delta \end{array} \right) \right).$$

Then

$$|\mathbf{A} + \mathbf{B}| = (\alpha, \beta) \begin{pmatrix} A^* & 0 \\ 0 & B^* \end{pmatrix} \begin{pmatrix} \gamma \\ \delta \end{pmatrix} = \alpha A^* \gamma + \beta B^* \delta = |\mathbf{A}| + |\mathbf{B}|.$$

Lemma $\operatorname{Rec}_{S}(S_{0}, \Sigma)$ is closed under product.

Proof Let $\mathbf{A} = (\alpha, A, \gamma)$ and $\mathbf{B} = (\beta, B, \delta)$ be automata over (S_0, Σ) . Define

$$\mathbf{A} \cdot \mathbf{B} = \left((\alpha, 0), \left(\begin{array}{cc} A & \gamma \beta B \\ 0 & B \end{array} \right), \left(\begin{array}{c} \gamma \beta \delta \\ \delta \end{array} \right) \right).$$

Then

$$|\mathbf{A} \cdot \mathbf{B}| = (\alpha, 0) \begin{pmatrix} A^* & A^* \gamma \beta B B^* \\ 0 & B^* \end{pmatrix} \begin{pmatrix} \gamma \beta \delta \\ \delta \end{pmatrix}$$
$$= \alpha A^* \gamma \beta \delta + \alpha A^* \gamma \beta B^+ \delta$$
$$= \alpha A^* \gamma \beta B^* \delta = |\mathbf{A}| \cdot |\mathbf{B}|$$

Lemma $\operatorname{Rec}_{S}(S_{0}, \Sigma)$ is closed under star.

Proof Let $\mathbf{A} = (\alpha, A, \gamma)$ be an automaton over (S_0, Σ) . Define $\mathbf{A}^* = \left((\alpha, 1), \begin{pmatrix} (\gamma \alpha)^* A & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} (\gamma \alpha)^* \gamma \\ 1 \end{pmatrix} \right).$

Then

$$|\mathbf{A}^*| = (\alpha, 1) \begin{pmatrix} ((\gamma \alpha)^* A)^* & 0\\ 0 & 1 \end{pmatrix} \begin{pmatrix} (\gamma \alpha)^* \gamma\\ 1 \end{pmatrix}$$
$$= \alpha ((\gamma \alpha)^* A)^* (\gamma \alpha)^* \gamma + 1$$
$$= \alpha (\gamma \alpha + A)^* \gamma + 1$$
$$= \alpha (A^* \gamma \alpha)^* A^* \gamma + 1$$
$$= (\alpha A^* \gamma)^* \alpha A^* \gamma + 1$$
$$= (\alpha A^* \gamma)^* = |\mathbf{A}|^*.$$

Proof of Kleene's thm, completed By the above lemmas, the inclusion $\operatorname{Rat}_S(S_0, \Sigma) \subseteq \operatorname{Rec}_S(S_0, \Sigma)$ follows if each element of $S_0 \cup \Sigma$ is recognizable. But any $s \in S_0$ is the behavior of the automaton (s, 0, 1). Also, any $a \in \Sigma$ is the behavior of

$$\left((1,0), \left(\begin{array}{cc} 0 & a \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 \\ 1 \end{array}\right)\right).$$

The proof is complete.

Let S be a Conway semiring and A a set. Then $S\langle\!\langle A^*\rangle\!\rangle$ is a Conway semiring. Let Σ denote the set A. We define $S^{rat}\langle\!\langle A^*\rangle\!\rangle = \operatorname{Rat}_{S\langle\!\langle A^*\rangle\!\rangle}(S,\Sigma)$, $S^{rec}\langle\!\langle A^*\rangle\!\rangle = \operatorname{Rec}_{S\langle\!\langle A^*\rangle\!\rangle}(S,\Sigma)$.

Corollary $S^{\mathsf{rat}}\langle\!\langle A^* \rangle\!\rangle = S^{\mathsf{rec}}\langle\!\langle A^* \rangle\!\rangle.$

When $S = \mathbb{B}$ and A is an alphabet, this is Kleene's theorem.

Partial Conway semirings

Sometimes the star operation is only partially defined, e.g., in the semirings $\mathbb{N}\langle\!\langle A^* \rangle\!\rangle$, where the star operation is only meaningful on the **proper series** (i.e., on those series mapping the empty word to 0.) The axiomatic may be extended to cover such semirings.

Definition (Bloom-Ésik-Kuich) A partial *-semiring is a semiring S equipped with a partial star operation * : $D(S) \rightarrow S$ whose domain of definition D(S) is an ideal of S, i.e., $0 \in D(S)$, $D(S) + D(S) \subseteq D(S)$, $S \cdot D(S) \cdot S \subseteq D(S)$. A partial Conway semiring is a partial *-semiring which satisfies the sum star and product star identities:

$$(a+b)^* = a^*(ba^*)^*, \quad a, b \in D(S)$$

 $(ab)^* = 1 + a(ba)^*b, \quad a \text{ or } b \in D(S)$

Definition (Eilenberg) A complete semiring is a semiring *S* equipped with a summation operation $\sum_{i \in I} s_i$ defined on all families s_i , $i \in I$ of elements of *S* subject to the following axioms:

$$\sum_{i \in \emptyset} a_i = 0 \qquad \sum_{i \in \{1,2\}} a_i = a_1 + a_2$$
$$b(\sum_{i \in I} a_i) = \sum_{i \in I} ba_i, \qquad (\sum_{i \in I} a_i)b = \sum_{i \in I} a_ib$$
$$\sum_{j \in J} \sum_{i \in I_j} a_i = \sum_{i \in I} a_i$$

where in the last equation, I is the disjoint union of the sets $I_j, j \in J$. A morphism of complete semirings is a semiring morphism which preserves all sums.

Examples

- 1. The boolean semiring \mathbb{B} with $\sum_{i \in I} s_i = 1$ iff $\exists i \ s_i = 1$.
- 2. The semiring \mathbb{N}_{∞} with $\sum_{i \in I} s_i = \infty$ iff $\exists i \ s_i = \infty$ or $\exists^{\infty} i \ s_i \neq 0$.
- 3. The lattice of all subsets of a set.
- 4. Any complete, completely distributive lattice.

Definition In any complete semiring S, we define a star operation: $s^* = \sum_{n>0} s^n$, for all $s \in S$.

Proposition Any morphism of complete semirings preserves the star operation.

Proposition Any complete semiring is a Conway semiring.

Proposition Suppose that S is a complete semiring.

• Then for each n, the matrix semiring $S^{n \times n}$, equipped with the pointwise summation is also a complete semiring. Moreover, the star operation determined by the complete semiring structure is the same as that determined by the matrix star formula.

• For each set A, the power series semiring $S\langle\!\langle A^* \rangle\!\rangle$, equipped with the pointwise summation is complete. Moreover, the star operation determined by the complete semiring structure agrees with the one defined earlier.

Thus, when $\mathbf{A} = (\alpha, A, \beta)$ over a complete semiring S, then $|\mathbf{A}| = \alpha M^* \beta = \alpha (\sum_{n \ge 0} M^n) \beta = \sum_{n \ge 0} \alpha M^n \beta.$

Continuous semirings

A semiring S is **ordered** if it is equipped with a partial order \leq preserved by the operations of sum and product. A morphism of ordered semirings also preserves the partial order. A **positively ordered semiring** S also satisfies $0 \leq a$ for all $a \in S$.

Definition (Eilenberg) A continuous semiring is a positively ordered semiring S which is a cpo such that the sum and product operations are continuous. A morphism of continuous semirings is a morphism of ordered semirings which is a continuous function.

Examples • Any finite positively ordered semiring.

- \mathbb{N}_{∞} and \mathbb{B} .
- The semiring of languages over a set A.
- Every complete, completely distributive lattice.

Continuous semirings

Proposition Any continuous semiring is a complete semiring with summation

$$\sum_{i \in I} s_i = \bigvee_{F \subseteq I, F \text{ is finite } j \in F} s_j$$

Any morphism of continuous semirings is a complete semiring morphism.

Thus, there is a canonical star operation on each continuous semiring.

Proposition Any continuous semiring is a Conway semiring.

Continuous semirings

Proposition Suppose that S is a continuous semiring.

• Then for each n, the matrix semiring $S^{n \times n}$, equipped with the pointwise order is also a continuous semiring. Moreover, the star operation determined by the continuous semiring structure agrees with the one determined by the matrix star formula.

• For each set A, the power series semiring $S\langle\!\langle A^* \rangle\!\rangle$, equipped with the pointwise order is continuous. Moreover, the star operation determined by the continuous semiring structure agrees with the one defined earlier.

Inductive *-semirings

Definition (Ésik-Kuich) An **inductive** *-semiring is an ordered semiring S which is a *-semiring such that for any $a, b \in S$, a^*b is the least pre-fixed point of the function $S \to S$, $x \mapsto ax + b$:

- $aa^*b + b \le b$ (or $aa^* + 1 \le 1$)
- $ax + b \le x \implies a^*b \le x$

A **symmetric inductive** *-**semiring** is an inductive *-semiring whose *dual* is also an inductive *-semiring. A morphism of (symmetric) inductive *-semirings is an ordered semiring morphism which preserves star.

Inductive *-semirings

Proposition Every continuous *-semiring is a symmetric inductive *-semiring. Every inductive *-semiring is a Conway semiring. Moreover, the star operation determined by the inductive semiring structure is the same as that determined by the matrix star formula.

Proposition If *S* is a (symmetric) inductive *-semiring then, equipped with the pointwise order and the star operation defined above, so is each semiring $S^{n \times n}$ and $S\langle\!\langle A^* \rangle\!\rangle$. Moreover, the star operation determined by the inductive semiring structure agrees with the one defined earlier.

Thus, when $\mathbf{A} = (\alpha, A, \beta)$ is an automaton of dim. n in an iductive semiring, $|\mathbf{A}| = \alpha A^*\beta$ with A^* being the least solution of the matrix equation $X = AX + E_n$.

Extensions and other results

Extensions: Automata on infinite words (Büchi automata), finite and infinite trees, algebraic theories.

Completeness results for the equational theory of (regular) languages, (rational) power series, tree languages and formal series of trees, and others.

Some literature

S.L. Bloom, ZE: Iteration Theories, Springer-Verlag, 1993.

S.L. Bloom, ZE: Equational axioms for regular sets, *Mathematical Structures in Computer Science*, 3(1993), 1–24.

S.L. Bloom, ZE: Axiomatizing rational power series over natural numbers, *Information and Computation*, 207(2009), 793–811.

ZE, W. Kuich: Equational axioms for a theory of automata, in: *Formal Languages and Applications*, Springer-Verlag, 2004, 183–196.

ZE, W. Kuich: Free iterative and iteration *K*-semialgebras, *Algebra Universalis*, 67(2012), 141–162.

ZE, W. Kuich: Free inductive *K*-semialgebras, *J.of Logic and Algebraic Programming*, 82(2013), 111–122.