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Aims

• To show that the validity of several constructions in au-

tomata theory only depends on certain simple equational prop-

erties of fixed operations.

• To define and develop the basic theory of Conway and it-

eration semirings.

•To show the usefulness of these algebraic structures for au-

tomata theory by:

• showing that Kleene’s theorem only depends on the

Conway semiring identities, and

• providing complete axiomatizations of the equational

theory of the semirings of (regular) languages and (rational)

power series, and

• relating iteration semirings to complete and continuous

semirings, and inductive ∗-semirings and Kleene algebras.
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Semirings

Definition A semiring

S = (S,+, ·,0,1)

• (S,+,0) is a commutative monoid, (S, ·,1) is a monoid.

•

a(b+ c) = ab+ ac

(b+ c)a = ba+ ca

0a = a0 = 0.

Idempotent semiring: a+ a = a

Commutative semiring: ab = ba

A morphism of semirings preserves the operations and the con-

stants.
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Semirings

Examples

• The semiring N of nonnegative integers.

• The boolean semiring B = ({0,1},∨,∧,0,1)

• The semiring N∞ with underlying set N ∪ {∞}

∞+ x = x+∞ = ∞, ∞y = y∞ = ∞, x, y ∈ N∞, y 6= 0

• The language semiring P(A∗) = (P(A∗),∪, ·, ∅, {ǫ}).

• The semiring P(M) of all subsets of a monoid M .

• The semiring Rel(A) = (Rel(A),∪, ◦, ∅, Id) of binary rela-

tions.

• Polynomial semirings S〈A∗〉.

• The tropical semirings

T = (N∪ {∞},min,+,∞,0) and (N∪ {−∞},max,+,−∞,0)

• Any ring (thus any field) and any bounded distributive lat-

tice.
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Z. Ésik: Axiomatic Framework for Automata

Why semirings?

A finite automaton over a semiring S is a finite directed graph

whose edges are labeled in the semiring S. (Some vertices may

also carry a label in S.)

The behavior of the automaton is an element of S.

Examples

• Classical finite automata.

• Weighted finite automata.

• Iterative programs.

Automata can be represented by matrices.
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Matrix semirings

When S is a semiring and n,m ≥ 0, we denote by Sn×m the set

of all n×m matrices over S.

Definition Suppose that S is a semiring and n,m, p ≥ 0. For any

matrices A,B ∈ Sn×m, we define A+B ∈ Sn×m:

(A+B)ij = Aij +Bij

And if A ∈ Sn×m and B ∈ Sm×p, then we define AB ∈ Sn×p by

(AB)ij =
m
∑

k=1

AikBkj.

The zero matrix 0mn ∈ Sm×n has all 0 entries. The unit matrix

En ∈ Sn×n has 1’s on the diagonal and 0’s elsewhere.
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Matrix semirings

Proposition When S is a semiring and n ≥ 0,

Sn×n = (Sn×n,+, ·,0, En)

is a semiring.

Definition Given a relation ρ from the set of the first n positive

integers to the set of the first m positive integers, there is an

associated zero-one matrix, also denoted ρ with ρij = 1 iff iρj.

We call this matrix a relational matrix, or a functional ma-

trix, when ρ is a function. A permutation matrix is a matrix

associated with a permutation.
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Z. Ésik: Axiomatic Framework for Automata

Polynomial and power series semirings

Definition Given a semiring S and a set A, a (formal) power

series over S and A:

f : A∗ → S or f =
∑

u∈A∗

(f, u)u,

where (f, u) = f(u) for all words u. Support of f : supp(f) =

{u ∈ A∗ : (f, u) 6= 0}. A polynomial is a series whose support is

finite.

The sum of two series is defined pointwise. The product of two

series f, g is given by:

(fg, u) =
∑

u=xy
(f, x)(g, y) i.e.,

(fg)(u) =
∑

u=xy
f(x)g(y), u ∈ A∗.
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Polynomial and power series semirings

The series 0 and the series 1 are given by

• (0, u) = 0, for all u ∈ A∗,

• (1, ǫ) = 1 and (1, u) = 0, for all u ∈ A+, where ǫ denotes

the empty word.

We may embed S and A∗ into S〈A∗〉 in a natural way.

(s, u) =

{

s if u = ǫ

0 otherwise

(v, u) =

{

1 if v = u

0 otherwise
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Polynomial and power series semirings

Example Each series in B〈〈A∗〉〉 may be identified with a subset

of A∗. B〈〈A∗〉〉 is isomorphic to P(A∗). B〈A∗〉 is isomorphic to

Pf(A
∗), the semiring of finite subsets of A∗.

Proposition For every set A and semiring S, S〈〈A∗〉〉 is a semiring

containing S〈A∗〉 as a subsemiring.
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Polynomial and power series semirings

Theorem The semiring N〈A∗〉 is the free semiring, freely gener-

ated by the set A.

Given any h : A → S′, where S′ is a semiring, there is a unique

way to extend h to a semiring morphism h♯ : N〈A∗〉 → S′. First

extend h to a monoid morphism h : A∗ → S′, then let

sh♯ =
∑

u∈supp(s)

(s, u)(uh)

for all s ∈ N〈A∗〉.

Theorem The semiring B〈A∗〉 (or Pf(A
∗)) is the free idempotent

semiring, freely generated by the set A.
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Z. Ésik: Axiomatic Framework for Automata

Polynomial and power series semirings

Theorem Given any semiring S′ and functions hS : S → S′ and

h : A → S′ such that hS is semiring morphism and each shS

commutes with any ah, there is a unique semiring morphism

h♯ : S〈A∗〉 → S′ extending both hS and h.
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Conway semirings

Definition A ∗-semiring is a semiring S equipped with a unary

star operation ∗ : S → S. Morphisms of ∗-semirings are semiring

morphisms preserving the star operation.

Definition A Conway semiring is a ∗-semiring S which satisfies

the product star and sum star identities, i.e.,

(ab)∗ = a(ba)∗b+1

(a+ b)∗ = a∗(ba∗)∗, a, b ∈ S.
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Conway semirings

Proposition The following identities hold in Conway semirings:

a∗ = aa∗ +1

a∗ = a∗a+1

0∗ = 1

aa∗ = a∗a

(ab)∗a = a(ba)∗

(a+ b)∗ = (a∗b)∗a∗

The first identity is the star fixed point identity. In any Conway

semiring S we define a+ = aa∗ = a∗a.
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Conway semirings

Examples

• B, N∞

B: 0∗ = 1∗ = 1, N∞: 0∗ = 1, x∗ = ∞, x 6= 0

• P(A∗)

L∗ = {u1 . . . un : ui ∈ L, n ≥ 0}

• T

x∗ = 0, x ∈ N ∪ {∞}

• Rel(A)

R∗ is the reflexive-transitive closure of R
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Z. Ésik: Axiomatic Framework for Automata

Conway semirings

When S is a ∗-semiring, we turn each matrix semiring Sn×n into

a ∗-semiring. When n = 0, the definition of star is clear. When

n = 1, we use the star operation of S. Suppose that n > 1 and

let m = n− 1. We define:
(

A B

C D

)∗

=

(

α β

γ δ

)

where A ∈ Sm×m, B ∈ Sm×1, C ∈ S1×m, and D ∈ S1×1, and

where

α = A∗BδCA∗ +A∗ β = A∗Bδ

γ = δCA∗ δ = (D + CA∗B)∗.
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Conway semirings

Theorem (Conway, Krob, Bloom-Ésik) Suppose that S is a Con-

way semiring. Then, by the above definition, so is each Sn×n,

and the matrix star formula holds for all possible decompositions

of a matrix into four parts such that A and D are square matri-

ces of any dimension. Moreover, the star permutation identity

holds:

(πAπT )∗ = πA∗πT

where A ∈ Sn×n and π is an n × n permutation matrix with

transpose (inverse) πT .
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Conway semirings

Note The star permutation identity can be rephrased as the

implication:

Aπ = πB ⇒ A∗π = πB∗

where A,B are n×n and π is an n×n permutation matrix. The

identity (AB)∗ = En +A(BA)∗B holds for all matrices A ∈ Sn×m

and B ∈ Sm×n.
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Conway semirings

Proposition The following identities hold for matrices over a

Conway semiring:
(

A B

C D

)∗

=

(

(A+BD∗C)∗ (A+BD∗C)∗BD∗

(D + CA∗B)CA∗ (D + CA∗B)∗

)

(

A B

0 D

)∗

=

(

A∗ A∗BD∗

0 D∗

)

(

A 0
0 D

)∗

=

(

A∗ 0
0 D∗

)
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Conway semirings

Suppose that S is a Conway semiring and A is a set. Then we

define a star operation on S〈〈A∗〉〉. Given s ∈ S〈〈A∗〉〉, let s0 = (s, ǫ).

Then for any word u we define

(s∗, u) =
∑

u=u1···un, ui∈A+

s∗0(s, u1)s
∗
0 · · · s

∗
0(s, un)s

∗
0

Theorem (Bloom-Ésik) If S is a Conway semiring, then so is

any S〈〈A∗〉〉.
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Kleene’s theorem in Conway semirings

Suppose that S is a Conway semiring, S0 is a sub Conway semi-

ring of S, and Σ ⊆ S. Let S0〈Σ〉 denote the collection of all

finite linear combinations over Σ with coefficients in S0.

Definition An automaton over (S0,Σ) is a triplet A = (α,A, β),

where α ∈ S1×n
0 , A ∈ (S0〈Σ〉)n×n, β ∈ Sn×1

0 , called the initial vec-

tor, the transition matrix and the final vector. The behavior

of A is:

|A| = αA∗β.

Definition We call s ∈ S recognizable over (S0,Σ) if s is the be-

havior of some automaton over (S0,Σ). Notation: RecS(S0,Σ).
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Kleene’s theorem in Conway semirings
Examples

1. Let S = B〈〈Σ∗〉〉, S0 = B, Σ a finite set. Then an automa-

ton over (S0,Σ) is an ordinary nondeterministic automaton,

and its behavior is the characteristic series of the language

accepted by the nondeterministic automaton.

2. Let S0 be the semiring N∞ and let Σ be a finite set. Consider

the semiring S0〈〈Σ
∗〉〉. Then an automaton A = (α,A, β) over

(S0,Σ) is a weighted automaton over Σ with weights in N∞

and the behavior is given for words u = a1 . . . an by

(|A|, u) =
∑

i,i1,...,in−1,j

αi(Ai,i1, a1) · · · (Ain−1,j, an)βj.

Thus a series is recognizable over (S0,Σ) iff it is recognizable

by a weighted automaton.
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Kleene’s theorem in Conway semirings

Definition Let S be a Conway semiring, S0 a sub Conway semi-

ring of S, and Σ ⊆ S. We call s ∈ S rational over (S0,Σ) if s

is contained in the sub Conway semiring generated by S0 ∪ Σ.

Notation: RatS(S0,Σ).

Theorem (Bloom-Ésik) Kleene theorem for Conway semirings.

Let S be a Conway semiring, S0 a sub Conway semiring of S,

and Σ ⊆ S. Then RatS(S0,Σ) = RecS(S0,Σ).

The inclusion RecS(S0,Σ) ⊆ RatS(S0,Σ) follows from the matrix

star formula. The reverse inclusion is shown by establishing some

closure properties of RecS(S0,Σ).
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Kleene’s theorem in Conway semirings

Lemma RecS(S0,Σ) is closed under sum.

Proof Let A = (α,A, γ) and B = (β,B, δ) be automata over

(S0,Σ). Define

A+B =

(

(α, β),

(

A 0
0 B

)

,

(

γ

δ

))

.

Then

|A+B| = (α, β)

(

A∗ 0
0 B∗

)(

γ

δ

)

= αA∗γ + βB∗δ = |A|+ |B|.
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Kleene’s theorem in Conway semirings

Lemma RecS(S0,Σ) is closed under product.

Proof Let A = (α,A, γ) and B = (β,B, δ) be automata over

(S0,Σ). Define

A ·B =

(

(α,0),

(

A γβB

0 B

)

,

(

γβδ

δ

))

.

Then

|A ·B| = (α,0)

(

A∗ A∗γβBB∗

0 B∗

)(

γβδ

δ

)

= αA∗γβδ + αA∗γβB+δ

= αA∗γβB∗δ = |A| · |B|
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Z. Ésik: Axiomatic Framework for Automata

Kleene’s theorem in Conway semirings

Lemma RecS(S0,Σ) is closed under star.

Proof Let A = (α,A, γ) be an automaton over (S0,Σ). Define

A
∗ =

(

(α,1),

(

(γα)∗A 0
0 0

)

,

(

(γα)∗γ
1

))

.

Then

|A∗| = (α,1)

(

((γα)∗A)∗ 0
0 1

)(

(γα)∗γ
1

)

= α((γα)∗A)∗(γα)∗γ +1

= α(γα+A)∗γ +1

= α(A∗γα)∗A∗γ +1

= (αA∗γ)∗αA∗γ +1

= (αA∗γ)∗ = |A|∗.
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Kleene’s theorem in Conway semirings

Proof of Kleene’s thm, completed By the above lemmas, the

inclusion RatS(S0,Σ) ⊆ RecS(S0,Σ) follows if each element of

S0 ∪ Σ is recognizable. But any s ∈ S0 is the behavior of the

automaton (s,0,1). Also, any a ∈ Σ is the behavior of
(

(1,0),

(

0 a

0 0

)

,

(

0
1

))

.

The proof is complete.
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Kleene’s theorem in Conway semirings

Let S be a Conway semiring and A a set. Then S〈〈A∗〉〉 is a

Conway semiring. Let Σ denote the set A. We define Srat〈〈A∗〉〉 =

RatS〈〈A∗〉〉(S,Σ), Srec〈〈A∗〉〉 = RecS〈〈A∗〉〉(S,Σ).

Corollary Srat〈〈A∗〉〉 = Srec〈〈A∗〉〉.

When S = B and A is an alphabet, this is Kleene’s theorem.
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Partial Conway semirings

Sometimes the star operation is only partially defined, e.g., in the

semirings N〈〈A∗〉〉, where the star operation is only meaningful on

the proper series (i.e., on those series mapping the empty word

to 0.) The axiomatic may be extended to cover such semirings.

Definition (Bloom–Ésik–Kuich) A partial ∗-semiring is a semi-

ring S equipped with a partial star operation ∗ : D(S) → S

whose domain of definition D(S) is an ideal of S, i.e., 0 ∈ D(S),

D(S) + D(S) ⊆ D(S), S · D(S) · S ⊆ D(S). A partial Conway

semiring is a partial ∗-semiring which satisfies the sum star and

product star identities:

(a+ b)∗ = a∗(ba∗)∗, a, b ∈ D(S)

(ab)∗ = 1+ a(ba)∗b, a or b ∈ D(S)
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Complete semirings

Definition (Eilenberg) A complete semiring is a semiring S

equipped with a summation operation
∑

i∈I si defined on all

families si, i ∈ I of elements of S subject to the following axioms:

∑

i∈∅

ai = 0
∑

i∈{1,2}

ai = a1 + a2

b(
∑

i∈I

ai) =
∑

i∈I

bai, (
∑

i∈I

ai)b =
∑

i∈I

aib

∑

j∈J

∑

i∈Ij

ai =
∑

i∈I

ai

where in the last equation, I is the disjoint union of the sets

Ij, j ∈ J. A morphism of complete semirings is a semiring mor-

phism which preserves all sums.
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Complete semirings

Examples

1. The boolean semiring B with
∑

i∈I si = 1 iff ∃i si = 1.

2. The semiring N∞ with
∑

i∈I si = ∞ iff ∃i si = ∞ or ∃∞i si 6= 0.

3. The lattice of all subsets of a set.

4. Any complete, completely distributive lattice.
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Complete semirings

Definition In any complete semiring S, we define a star oper-

ation: s∗ =
∑

n≥0 s
n, for all s ∈ S.

Proposition Any morphism of complete semirings preserves the

star operation.

Proposition Any complete semiring is a Conway semiring.
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Complete semirings

Proposition Suppose that S is a complete semiring.

• Then for each n, the matrix semiring Sn×n, equipped with

the pointwise summation is also a complete semiring. Moreover,

the star operation determined by the complete semiring structure

is the same as that determined by the matrix star formula.

• For each set A, the power series semiring S〈〈A∗〉〉, equipped

with the pointwise summation is complete. Moreover, the star

operation determined by the complete semiring structure agrees

with the one defined earlier.

Thus, when A = (α,A, β) over a complete semiring S, then

|A| = αM∗β = α(
∑

n≥0M
n)β =

∑

n≥0 αM
nβ.
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Continuous semirings

A semiring S is ordered if it is equipped with a partial order ≤

preserved by the operations of sum and product. A morphism of

ordered semirings also preserves the partial order. A positively

ordered semiring S also satisfies 0 ≤ a for all a ∈ S.

Definition (Eilenberg) A continuous semiring is a positively or-

dered semiring S which is a cpo such that the sum and product

operations are continuous. A morphism of continuous semirings

is a morphism of ordered semirings which is a continuous func-

tion.

Examples • Any finite positively ordered semiring.

• N∞ and B.

• The semiring of languages over a set A.

• Every complete, completely distributive lattice.
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Continuous semirings

Proposition Any continuous semiring is a complete semiring

with summation

∑

i∈I

si =
∨

F⊆I, F is finite

∑

j∈F

sj

Any morphism of continuous semirings is a complete semiring

morphism.

Thus, there is a canonical star operation on each continuous

semiring.

Proposition Any continuous semiring is a Conway semiring.
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Continuous semirings

Proposition Suppose that S is a continuous semiring.

• Then for each n, the matrix semiring Sn×n, equipped with

the pointwise order is also a continuous semiring. Moreover, the

star operation determined by the continuous semiring structure

agrees with the one determined by the matrix star formula.

• For each set A, the power series semiring S〈〈A∗〉〉, equipped

with the pointwise order is continuous. Moreover, the star op-

eration determined by the continuous semiring structure agrees

with the one defined earlier.
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Inductive ∗-semirings

Definition (Ésik-Kuich) An inductive ∗-semiring is an ordered

semiring S which is a ∗-semiring such that for any a, b ∈ S, a∗b is

the least pre-fixed point of the function S → S, x 7→ ax+ b:

• aa∗b+ b ≤ b (or aa∗ +1 ≤ 1)

• ax+ b ≤ x ⇒ a∗b ≤ x

A symmetric inductive ∗-semiring is an inductive ∗-semiring

whose dual is also an inductive ∗-semiring. A morphism of (sym-

metric) inductive ∗-semirings is an ordered semiring morphism

which preserves star.
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Inductive ∗-semirings

Proposition Every continuous ∗-semiring is a symmetric induc-

tive ∗-semiring. Every inductive ∗-semiring is a Conway semiring.

Moreover, the star operation determined by the inductive semi-

ring structure is the same as that determined by the matrix star

formula.

Proposition If S is a (symmetric) inductive ∗-semiring then,

equipped with the pointwise order and the star operation de-

fined above, so is each semiring Sn×n and S〈〈A∗〉〉. Moreover, the

star operation determined by the inductive semiring structure

agrees with the one defined earlier.

Thus, when A = (α,A, β) is an automaton of dim. n in an

iductive semiring, |A| = αA∗β with A∗ being the least solution of

the matrix equation X = AX + En.
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Extensions and other results

Extensions: Automata on infinite words (Büchi automata), fi-

nite and infinite trees, algebraic theories.

Completeness results for the equational theory of (regular) lan-

guages, (rational) power series, tree languages and formal series

of trees, and others.
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